Trent Aquatic Research

Program

Winter Limnology in the Kawarthas

Dr. Nolan J. T. Pearce

Trent Aquatic Research Program (TARP)

Greater Golden Horseshoe

- Rapidly growing municipalities, mid-sized centers, small towns and villages, and rural areas
- Boundary of Ontario's Growth Plan

Greater Golden Horseshoe

- Growth projections for the Kawarthas
 - ~ 110,000 people by 2050
- ~ 4 million people for the GGH

HEMSON CONSULTING LTD. 2020

climateatlas.ca

Kawartha Lakes

 Socially, economically, and ecologically important

But threatened by:

- Population Growth
- Land Use Change
- Climate Change

Trent Aquatic Research Program (TARP)

Long-Term Ecological Monitoring

- Systematic repeated measurement of ecosystem conditions (e.g., water quality)
- Used to assess the heath of lakes and diagnose potential issues
- Provide a baseline to evaluate the changing status of ecosystem structure, ecological processes, and the services these ecosystems provide
- Education and outreach

specific conductivity	μS/m
dissolved oxygen, concentration	mg/L
dissolved oxygen, percent saturation	%
water temperature	°C
Secchi depth	m
рН	
total suspended solids	mg/L
dissolved organic carbon	mg C/L
absorbance at 280 nm, in absorbance units	m ⁻¹
molar absorptivity at 280 nm	L mol C ⁻¹ cm ⁻¹
molar absorptivity at 280 nm total phosphorus	L mol C ⁻¹ cm ⁻¹ µg P/L
molar absorptivity at 280 nm total phosphorus soluble reactive phosphorus	L mol C ⁻¹ cm ⁻¹ µg P/L µg P/L
molar absorptivity at 280 nm total phosphorus soluble reactive phosphorus particulate phosphorus	L mol C ⁻¹ cm ⁻¹ µg P/L µg P/L µg P/L
molar absorptivity at 280 nm total phosphorus soluble reactive phosphorus particulate phosphorus total dissolved nitrogen	L mol C ⁻¹ cm ⁻¹ µg P/L µg P/L µg P/L mg N/L
molar absorptivity at 280 nm total phosphorus soluble reactive phosphorus particulate phosphorus total dissolved nitrogen nitrate	L mol C ⁻¹ cm ⁻¹ µg P/L µg P/L µg P/L mg N/L mg N/L
molar absorptivity at 280 nm total phosphorus soluble reactive phosphorus particulate phosphorus total dissolved nitrogen nitrate ammonium	L mol C ⁻¹ cm ⁻¹ µg P/L µg P/L µg P/L mg N/L mg N/L mg N/L
molar absorptivity at 280 nm total phosphorus soluble reactive phosphorus particulate phosphorus total dissolved nitrogen nitrate ammonium chlorophyll a	L mol C ⁻¹ cm ⁻¹ µg P/L µg P/L µg P/L mg N/L mg N/L mg N/L µg/L

- Annual (summer) monitoring of about 35+ lakes
 - Since 2015
- Measure water quality and various limnological variables
 - Dissolved oxygen
 - Nutrients (nitrogen and phosphorus)
 - Algae biomass
 - And many more...
- Facilitate hypothesis driven research projects with collaborators and graduate students

- Spatial analysis of lake physiography
 - Bathymetry, surface area, volume, residence time etc.
- Watershed delineation and characterization
 - Land cover
 - Surficial geology and soil type

- Spatial analysis of lake physiography
 - Bathymetry, surface area, volume, residence time etc.
- Watershed delineation and characterization
 - Land cover
 - Surficial geology and soil type
- Aquatic ecosystems are a product of their watersheds!

- Winter is changing
 - Ice on later ice off earlier
 - Ice thickness and snow pack
 - Increased stratification duration
- Largely understudied!

- Winter is changing
 - Ice on later ice off earlier
 - Ice thickness and snow pack
 - Increased stratification duration
- Largely understudied!
- Consequences for physical, biological, and chemical processes in lakes
 - Dissolved oxygen depletion
 - Food web instability
 - Community composition
 - Timing of resource availability

- To support our monitoring goals, 12 lakes were sampled in the winter of 2022
 - Anstruther, Big Cedar, Bottle, Catchacoma, Gold, Kasshabog, Loon Call, Long, Mississauga, Pencil, Raccoon, Salmon
- Provide a baseline of winter conditions
- Investigate spatial differences among lakes with contrasting physical geographies

- Vertical Profiles 5 cm resolution
 - Temperature
 - Light
 - Dissolved oxygen
 - Chlorophyll a
 - Conductivity ... etc.
- Water Chemistry
 - 1m below ice 1m above bottom
 - Nutrients (nitrogen and **phosphorus**)
 - Dissolved organic carbon ... etc.

TP is higher in the winter, particularly at the surface

- Internal P inputs following turnover
- Less uptake by phytoplankton
- Regeneration by microbes
- Need to look closer!
- Some lakes higher than 10 ug/L

More spatial variation in the winter

- Why?
- Implications for spring!

Yellow → Brown = Increasing Volume

Chicago, IL & Online Everywhere 12–16 December 2022

SCIENCELEQDSTHEFUTURE

AGU User Portal - Fall Meeting 2022

Submit an Innovative Abstract

My Account

Abstract Presenting Author Limnology of the Land Between

Current Work

- Summer monitoring complete lab work in process
- Graduate student projects
 - Intensive sampling on bottle lake and stoney lake
 - Experimental work on several lakes to investigate drivers of primary production
 - Spatial drivers of Kawartha Lakes limnology
- Standardizing sampling and improving data storage
- Gathering, digitizing, and archiving historic (~1960s onwards) data on the Kawartha Lakes

Publication In Progress – Limnology of the Land Between

Nolan Pearce
Nolan Pearce
Anothering
Anothering
Anothering
Nolan Pearce
Anothering
Anoothering
Anothering
Anothering
Anothering
Anothe

(?)

https://mycommunity.trentu.ca/tarp

New Aquatic Research Program at Trent to Advance Freshwater **Conservation in Kawarthas**

March 20, 2020

Contact Us (f) (m) (m)

Q

Search

Support TARP

f 🕑 in 🖾 🖨

defining feature of our region, understanding and protecting its health should be among our top priorities

Water is a

Dr. Paul Frost David Schindler Professor in Aquatic Science

Questions?

Canada Foundation for Innovation Fondation canadienne pour l'innovation

Ministry of Natural Resources

